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Abstract—Radionuclide emissions from nuclear contraband
challenge both detection and measurement technologies to cap-
ture and record each event. The development of a sequential
Bayesian processor incorporating both the physics of gamma-
ray emissions and the measurement of photon energies offers
a physics-based approach to attack this challenging problem.
It is shown that a “physics-based” structure can be used to
develop an effective detection technique, but also motivates the
implementation of this approach using or particle filters to
enhance and extract the required information.

I. INTRODUCTION

Radionuclide detection is a critical first line defense to
detect the transportation of radiological materials by potential
terrorists. Detection of these materials is particularly difficult
due to the inherent low-count emissions produced. These low-
count emissions result when sources are shielded to disguise
their existence or, when being transported, are in relative
motion with respect to the sensors. Radionuclide identification
from low-count gamma ray emissions is a critical capability
that is very difficult to achieve, moreover, this methodology
must cope with background noise, finite detector resolution,
and the heterogeneous media along transport paths between
the sources and detectors. Detection/classification/estimation,
therefore, becomes a question of increasing signal-to-noise
ratio (SNR) in this case, since low-count emissions become
buried in the background and Compton scattering noise, ren-
dering a meaningful and timely detection highly improbable
[1]-[2].

One of the major challenges is to develop techniques that
can provide a timely solution. The basic problem we discuss is
the detection and classification of radioactive contraband from
highly uncertain (noisy) low-count, radionuclide measure-
ments using a statistical approach based on Bayesian inference
and physics-based signal processing. In this paper we develop
a Bayesian statistical approach to solve the radiaation detection
problem. The usual model-based approach [3] is limited be-
cause of two major reasons: (1) the physics models employed
do not necessarily capture the true essence of the problem; and
(2) the usual statistical machinery to solve such a problem
is limited in scope. That is, the contemporary approach is
to use linearized approximations to the nonlinear processors
(extended and unscented Kalman filters) that imply underlying
Gaussian probabilistic assumptions [3]-[5]. Unfortunately the
nuclear physics dominating this problem is not characterized
as such by unimodal (one peak) distributions, but rather by

a multimodal (multiple peaks) representation. We develop
physics-based statistical models that capture the essence of this
important radiation detection problem and incorporate them
into a sequential Bayesian processor which is especially useful
when only low count data is available and a rapid detection
is required. In general, the model-based approach to signal
processing incorporates information about the process (γ-ray
emissions), measurement system (semiconductor detectors)
and uncertainty or noise (background, random noise, ampli-
tude fluctuations, time jitter, etc.) in the form of mathematical
models to develop a model-based processor (MBP) [3] capable
of enhancing or equivalently extracting signals from highly
uncertain environments [2].

Some work has been accomplished on this problem ([5]-
[11]), but unfortunately the physics models incorporated into
the processor do not capture the true essence of the problem
especially from a signal processing perspective. The proposed
solutions are based on enhancing the outputγ-ray spectrum
(energy histogram) by attempting to remove background inter-
ference and noise while enhancing the spectral (energy) lines
to detect the corresponding radionuclide. The identification of
radionuclide sources from theirγ-ray emission signatures is a
well-established discipline using spectroscopic techniques and
algorithms [2]. Unfortunately, these techniques fail on low-
count measurement data.

Our approach differs in that it models the source radionu-
clides by decomposing them uniquely as a superposition
(union) of monoenergetic sources that are then smeared and
distorted as they are transported through the usual path to
the detector for measurement and counting as illustrated in
Fig. 1. The measured data consists of a low energy count,
impulsive-like, time series measurements (energy vs time) in
the form of anevent mode sequence(EMS) obtained from
pulse shaping circuitry [2]. The problems of interest are then
defined in terms of this unique, orthogonal representation in
which solutions based on extracting this characterization from
uncertain detector measurements can be postulated.

In Sec. II we develop the physics-based signal process-
ing models employed in the subsequent Bayesian constructs.
Here we start with the monoenergetic representation and then
incorporate more of the instrumentation and noise into the
measurement model. Based on this representation we discuss
the overall probabilistic design in Sec. III illustrating how it
evolves naturally from the underlying source physics. In Sec.
IV we investigate signal processing solutions to the processing



Fig. 1. Gamma-ray evolution and measurement: Radionuclide source
(EMS), medium transport (physics), detector material interaction, detector
temporal response (pre-amplification/pulse shaping) and ADC conversion with
quantization noise.

problem as well as develop a sequential detection paradigm for
local detection. In Sec. V we develop the overall classification
scheme and demonstrate its performance on experimental data.
The results of applying the processor to controlled experi-
mental data shows the capability of the sequential Bayesian
processor to perform in a reasonable manner. We summarize
our results in the final section.

II. PHYSICS-BASED PROCESSING MODELS

The unique characterization of an unstable radionuclide
based on its electromagnetic emissions has been an intense
area of research and development for well over 50 years [1]-
[2]. It is well-known that a particular radionuclide can be
uniquely characterized by two basic parameters: itsenergy
amplitude levels emitted in the form of photons or gamma-rays
(γ-rays) and its radioactivedecay ratewhich is directly related
to its arrival time [2]. Knowledge of one or both of these
parameters provides a unique representation of a radionuclide.
Mathematically, we define the pair,[{εm}, {λm}], as the
respective energy level (MeV) and decay rate (probability
of disintegration/nuclei/sec) of themth-component of the
elemental radionuclide. Although both of these parameters
are used to uniquely characterize a radionuclide, only one is
actually necessary—unless there is uncertainty in extracting
the parameter.

Gamma-ray spectrometry is a methodology to identify ra-
dionuclides by estimating the energy (probability) distribution
or spectrum and creating a histogram of measured arrival data
at various levels (count vs. binned energy) [2]. It essentially
decomposes theγ-ray emissions into energy bins discarding
the temporal information. As mentioned previously, the role
of the γ-ray spectrum is analogous to the role of the Fourier
spectrum for identifying sinusoidal spectral lines in noise, a
particular radionuclide can be characterized by its inherent
“energy spectral lines” in the spectrum. These sharp lines
are used to identify the corresponding energy bin detecting
the presence of a particular component of the radionuclide.
In the ideal case, the spectrum consists only of lines or
spikes located at the correct bins of each constituent energy,
εm, uniquely characterizing the radionuclide. A search of the
spectrum for the strong presence of these lines is used for
identification. The lines are easily identified when the photon
interacts with the atoms of the detector material to produce
charge directly proportional to its energy. This interaction is
called a “photo-peak” which unfortunately occurs only10%

(or less) of the time. Most photons collide with material atoms
and are scattered losing energy in the exchange and in a sense
“losing its identity,” since it is no longer counted in the correct
energy bin complicating the spectrum even further.

The key issue in our approach is developing reasonable
statistical models of both emission and measurement processes
that can effectively be used in the Bayesian framework. These
stochastic models of the physical process must incorporate the
loss of information resulting from the absorption of energy
between an ideal source and the detector. The underlying
probability distributions describe the physics of the radiation
transport between the source and the detector.

Semiconductor (high purity germanium or sodium iodide)
energy detectors are designed to measure theγ-ray energy
from the electron current induced by the energy deposition
of the incoming photons in the detector material. A typical
detector is plagued with a variety of extraneous measurement
uncertainties that create inaccuracy and spreading of the mea-
sured current impulse (and thereforeγ-ray energy). The source
radionuclide can be represented by its constituents in terms of
monoenergetic (constant energy amplitude) components and
arrival times asξ(εm, τm). Since this representation of the
source radionuclide contains the constituent energy amplitude
levels and timing, then all of the information is completely
captured by the sets,[{εm} , {τm}] , m = 1, · · · , Mε. The
source arrivals can be used to extract the corresponding set
of decay constants,{λm} which are related [2]. Thus, from
the detector measurement of the individual photon arrivals
or equivalently the entireEMS, a particular radionuclide can
be uniquely characterized. The constituent energy amplitude
levels,{εm} and arrival times,{τm}, extracted from theEMS.

A. Event Mode Sequence

Next we develop a more detailed mathematical representa-
tion of the event mode sequence in terms of its monoenergetic
decomposition. From this decomposition, we then develop
the basic signal processing model in terms of the random
processes that govern its evolution.

Defineξ(n; εm, τm) as the component of anEMS sequence
as the nth-arrival from the mth-monoenergetic source of
energy level (amplitude), εm(n) and arrival time, τm(n)
with associateddecay rate, λm(n) —as a single pho-
ton impulse sample, that is,ξ(n; εm, τm) = εm(n)δ(t −
τm(n)) and source rateλm(n).

The idealEMS is composed of sets of energy-arrival sam-
ple pairs, {εm(n), τm(n)}. We could visualize this energy
exchange as a photon depositing its energy in the detector
material and the pair of unique energy-arrival parameters being
extracted by the measurement system.

In order to define the entire emission sequence over a
specified time interval,[to, T ), we introduce the set notation,
τ̃m := { τm(1) · · · τm(Nε(m)) } at the nth-arrival with
Nε(m) the total number ofcounts for the mth-source in
the interval. Therefore,ξ(n; εm, τ̃m) results in a unequally-
spaced impulse train. Theinterarrival time is defined by
4τm(n) = τm(n) − τm(n − 1) for 4τm(0) = to with



the corresponding set definition (above) of4τ̃m(n). The
monoenergetic source representationof a radionuclide source
characterized by its unique set of energy/interarrival pairs,
{εm,4τm} (or equivalently as its energy/decay rate pairs,
{εm, λm}) is given by

ξ(n; εm,4τ̃m) =
Nε(m)∑

n=1

ξ(n; εm(n),4τm(n)) =

Nε(m)∑

n=1

εm(n)δ(t −4τm(n)) at rateλm(n) (1)

for to known. Let us extend thisEMS model from a single
monoenergetic representation to incorporate a set ofMε-
monoenergetic sources that compose a complete source ra-
dionuclide. Suppose we have a radionuclide source whose
EMS is decomposed into itsMε-monoenergetic source com-
ponents, ξ(n; ε,4τ̃). From the composition of theEMS
we know that ξ(n; ε,4τ̃) = ∪Mε

m=1ξ(n; εm,4τ̃m) ⇔∑Mε

m=1 ξ(n; εm,4τ̃m); where the last equivalence results from
the pragmatic assumption that it is highlyimprobable that
any two arrivals will overlap. Thus, it follows that a complete
radionuclide can be represented in terms of its monoenergetic
decomposition, that is, theEMS is:

Rη(n; ε,4τ) =
Mε∑

m=1

Nε(m)∑

n=1

ξ(n; εm(n),4τm(n)) =

Mε∑

m=1

Nε(m)∑

n=1

εm(n)δ(t −4τm(n)) (2)

whereRη(n; ε,4τ) is the compositeEMS of the radionuclide,
Mε is the number of monoenergetic source components in the
compositeEMS, Nε(m) is the number (counts) of arrivals
from the mth-monoenergetic source component in the time-
interval, [to, T ), εm(n) is the nth-arrival of γ-ray energy
(amplitude) level of themth-monoenergetic component in
the time-interval of the compositeEMS, 4τm(n) is the nth
interarrival time of themth-monoenergetic component, in the
time interval of the compositeEMS. This representation can
be extended even further to capture a set of radionuclides as
well. Thus, this unique physics-based representation provides
the basis to develop signal models for subsequent processing.

B. Detector Measurements

The pulse-modeof detector (semiconductor) operation, is
the most common technique employed inγ-ray detection,
since both amplitude and arrivals are measured [2]. Amplitude
variations are typically expressed in terms of the differential
pulse height (amplitude) distribution which is a direct repre-
sentation of the uncertainty in measuring the energy level. This
distribution is commonly called thedetector response function
[2] and can be modeled in terms of our monoenergetic source
amplitude (energy amplitude level). Here the detector response
characterizes the energy deposited in the detector material
scaled to produce the equivalent charge (current) at the pulse
amplifier input electronics.

Fig. 2. Bayesian radiation detection: Acquisition, pre-processing (MBP),
energy/rate discrimination, Compton processing, background and extraneous
line rejection, probability density function estimation and classification.

Lumping the material uncertainties into an additive
noise process, the measurednth-interarrival of the mth-
monoenergetic component can be characterized by

pm(n) = εm(n)δ(t −4τm(n)) + w4τm(n)

where the uncertain energy amplitude level is assumed Gaus-
sian,ε ∼ N (εm, σ2

εm
), with inherent uncertainty representing

the material charge collection process time “jitter” by the ad-
ditive zero-mean, Gaussian noise,w4τm ∼ N (4τ i, σ

2
w4τm

).
Next we investigate the use of these models in Bayesian
processor designs.

III. PHYSICS-BASED RADIONUCLIDE DETECTION

Since all of the measurement data and required parameters
evolve from theEMS, we are in search of an estimator/detector
that enables us to “decide” when a particular target radionu-
clide is present or not. We show the inherent structure of the
processor in Fig. 2. After the single photon is processed by the
acquisition system, the extracted parameters are enhanced and
passed onto the energy/rate discriminators to “decide” on the
photon’s status (line/rate, Compton, reject). If acceptable, the
probability density function estimates are sequentially updated
and provided as input to the radionuclide detector.

We start with estimating the posterior distribution (or its
equivalent) from the uncertain data, that is,

Pr(Rη(n; ε,4τ)|Ξn) ⇔ Pr(ε,4τ)|Ξn)

for ε := {ε1(n), · · · , εMε(n)}, the complete set of en-
ergy amplitude levels composingRη along with 4τ :=
{4τ1(n), · · · ,4τMε(n)}, the corresponding set of interarrival
times with Ξn := {ξ(1), · · · , ξ(n)}, the set ofEMS measure-
ments including thenth-arrival.

Unfortunately, the basic radionuclide physics is more com-
plicated, since the emission of monoenergetic photons follows
a well-defined probability structure, that is,all monoenergetic
photons arenot present in theEMS during an individual



event (single photon arrival) onlyoneof the energy amplitude
levels is present as dictated by its branching or probability
of occurrence (αi) associated with its inherent structure as
specified in its energy decay diagram [2]. Therefore, we model
this decay structure by a Markov chain model ([12],[13])
incorporating anindicator functiondefined by:

Ij(m) =

{ 1 m = j

0 m 6= j

where Ij(m) is a random variable such that Pr(Ij(m) =
1|ξ(n; ε, τ) = Pr(Ij(m) = 1|Ξn) = αj for αj the corre-
sponding branching orprobability of occurrenceof the jth-
monoenergetic RN component.

Incorporating this additional physics information (αj) based
on the energy level diagrams of various radionuclides [2], we
can model the radionuclide by its monoenergetic decomposi-
tion embedding the corresponding indicator function,Ij(m),
such that

Rη(n; ε,4τ) =
Mε∑

m=1

ξ(n; εm,4τm) =

Mε∑

m=1

Nε(m)∑

n=1

Ij(m)εm(n)δ(t −4τm(n)) (3)

and therefore, for thejth-monoenergetic source we have

ξ(n; εm,4τm)|
m→j

=
Nε(j)∑

n=1

εj(n)δ(t −4τj(n)) (4)

With this in mind, the required radionuclide posterior dis-
tribution can be decomposed in terms of each arrival pair
(εj(n),4τj(n)) along with its associated probability of oc-
currence,αj, that is,

Pr(Rη(n; ε,4τ)|Ξn) = Pr(ε(n),4τ(n), Ij(m)|Ξn) (5)

Applying Bayes’ rule we obtain

Pr(Rη(n; ε,4τ)|Ξn) = Pr(4τ(n)|ε(n), Ij(m), Ξn)
× Pr(ε(n)|Ij(m), Ξn) × Pr(Ij(m)|Ξn) (6)

The posterior radionuclide probabilitycan be estimated
photon-by-photon and therefore evolves to the following pro-
cessor:

1) Given the “truth”: [{αt
m}, {εt

m}, {4τ t
m}] ; m =

1, · · · , Mε (from Tables);
2) Determine the jth-monoenergetic component with

Pr(Ij(m) = 1) = αj, decideon energy-interarrival
pair (εj,4τj);

3) Given m = j and the dataΞn, estimate theenergy
amplitude distribution: P̂r(εj(n)|Ξn);

4) Given εj(n) and the dataΞn, estimate theinterarrival
distribution: P̂r(4τj(n)|εj(n), Ξn);

5) Update the radionuclide posterior distribution
Pr(Rη(n; εj,4τj)|Ξn) using Eq. 6; and

6) Decideif this estimated distribution “matches” the target
radionuclide distribution.

Fig. 3. Bayesian radiation detection channel details: acquisition, pre-
processing (MBP), energy/rate discrimination and classification.

It is the joint relation of Eq. 6 that motivates the design of
the processor. We note first that in this construct the interarrival
times are conditioned on the energy amplitude levels and
data implying that wefirst extract these amplitudes from the
EMS. This also leads us to the required posterior based onε.
Next, using the knowledge of the amplitude, we extract the
corresponding interarrival.

A single photon channel processor for energy line/rate
detection is shown in Fig. 3 after the acquisition and pre-
processing steps are performed along with a pulse-height
spectrum (PHS) estimate (not required). Simple energy ampli-
tude level and rate detectors are first performed to determine
the status (accept or reject) of the processed photon—these
discriminators implement the indicator function discussed pre-
viously. If acceptable, this photon is used to estimate the
required posterior distribution for radionuclide detection.

After the photon is processed by a model-based proces-
sor (optional), the distributed detector: (1) discriminates the
individual monoenergetic amplitudes identifying one of the
parallel channels; (2) discriminates the corresponding rate
parameter for that particular channel confirming the monoen-
ergetic source detection from two parameters rather than one
amplitude parameter; (3) estimates or enhances the particular
amplitude and rate parameters along with the corresponding
distributions enabling the estimation of the radionuclide pos-
terior; and (5) detects/classifies the target RN.

To summarize, we are essentially implementing the mo-
noenergetic decomposition using discriminators to decide
which threat energy amplitude level/rate channel the photon
belongs to or rejecting it completely if no such channel
indicates a valid detection. All of the physics information is
combined in the decision function thereby by the monoener-
getic source parameters, (εt

m,4τ t
m, αt

m). This completes the
conceptual design of the Bayesian processor for radionuclide
detection, next we develop the various components of the
processor for implementation.

IV. SEQUENTIAL BAYESIAN DETECTION

In this section, we develop the sequential Bayesian frame-
work and individual components of the processor. To formally
pose this problem, we appeal to classical (sequential) detection
theory [14]. We are to test the binary hypothesis that the mea-
suredEMS has evolved from the targeted radionuclide (RN)



characterized uniquely from its monoenergetic decomposition
of Eq. 3. Therefore, we specify the hypothesis test

H0 : ξ(n; ε,4τ) = Rη(n; ε,4τ) + ν(n) [NON-TARGET]

H1 : ξ(n; ε,4τ) = Rη(n; εt,4τ t) + ν(n) [TARGET]

where Rη(n; ε,4τ ) is a random compositeEMS contami-
nated with zero-mean, Gaussian measurement (instrumenta-
tion) noise,ν ∼ N (0, σ2

ν) and

Rη(n; ε,4τ ) =
Mε∑

m=1

Nε(m)∑

n=1

Ij(m)εm(n)δ (t −4τm(n)) (7)

for εm ∼ N (εm, σ2
εm

) and4τm ∼ E(λ4τm4τm(n)).
The optimal solution to this binary decision problem is

based on applying theNeyman-Pearson theoremleading to
the sequential likelihood ratio [14] given by the recursion or
equivalently sequential likelihood ratio for thenth arrival as

L[Ξn] = L[Ξn−1] ×
Pr(ξ(n; ε,4τ)|Ξn−1,H1)
Pr(ξ(n; ε,4τ)|Ξn−1,H0)

(8)

Since the distributions under investigation are members of the
exponential family [12], then taking logarithms simplifies the
computations. We defineΛ[Ξn] := lnL[Ξn] to obtain the
sequential log-likelihood

Λ[Ξn] = Λ[Ξn−1] + lnPr(ξ(n; ε,4τ)|Ξn−1,H1)
− ln Pr(ξ(n; ε,4τ)|Ξn−1,H0) (9)

and therefore, the Waldsequential probability-ratio testbe-
comes

Λ[Ξn] ≥ ln T1(n) Accept H1

lnT0(n) ≤ Λ[Ξn] ≤ ln T1(n) Continue

Λ[Ξn] ≤ ln T0(n) Accept H0

(10)

where the thresholds are specified in terms of the false alarm
(PFA) and miss (PM ) probabilities as

T0(n) =
PM (n)
PFA(n)

T1(n) =
1 − PM(n)

PFA(n)
So we see that at each photon arrival (at timen), we se-
quentially updatethe likelihood and thresholds to perform the
detection — “photon-by-photon”. To implement the sequential
detector, we must specify the required distributions; therefore,
we have

Pr(ξ(n; ε,4τ)|Ξn−1,H`) =
Pr(Rη(n; ε,4τ, Ij(m)|Ξn−1,H`) + Pr(ν(n)|Ξn−1,H`)

(11)

for the hypotheses specified byH`; ` = 0, 1.
Using the monoenergetic radionuclide model, we obtain

Pr(ξ(n; ε,4τ)|Ξn−1,H`) =
Pr(ε(n),4τ(n), Ij(m)|Ξn−1,H`) + Pr(ν(n)|Ξn−1,H`)

(12)

Applying Bayes’ rule, we obtain the decomposition (as before)

Pr(ξ(n; ε,4τ )|Ξn−1,H`) =
Pr(4τ (n)|ε(n), Ij(m), Ξn−1,H`) × Pr(ε(n)|Ij(m), Ξn−1,H`)
×Pr(Ij(m)|Ξn−1,H`) + Pr(ν(n)|Ξn−1,H`) (13)

Decomposing the parameter vectors using the fact that each
arrival has “no memory” and applying the chain rule of
probability, we obtain

Pr(4τ (n) | ε(n), Ij(m), Ξn−1,H`)

=
Mε∏

m=1

Pr(4τm(n) | εm(n), Ij(m), Ξn−1,H`)

Pr(ε(n), Ij(m) | Ξn−1,H`)

=
Mε∏

m=1

Pr(εm(n) | Ij(m), Ξn−1,H`)

× Pr(Ij(m)|Ξn−1,H`) (14)

and therefore, we have

Pr(ξ(n; ε,4τ)|Ξn−1,H`) =
Mε∏

m=1

Pr(4τm(n)|εm(n), Ij(m), Ξn−1,H`) ×

Pr(εm(n)|Ij(m), Ξn−1,H`) × Pr(Ij(m)|Ξn−1,H`)
+ Pr(ν(n)|Ξn−1,H`); ` = 0, 1

(15)

Substituting these distributions into Eq. 9 thesequential log-
likelihood ratio detector is

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

ln
(

Pr(4τ t
m(n)|εt

m(n), It
j(m), Ξn−1,H1) ×

Pr(εt
m(n), It

j(m)|Ξn−1,H1) + Pr(ν(n)|Ξn−1,H1)
)

−
Mε∑

m=1

ln
(

Pr(4τm(n)|εm(n), Ij(m), Ξn−1,H0) ×

Pr(εm(n), Ij(m)|Ξn−1,H0) + Pr(ν(n)|Ξn−1,H0)
)

(16)

where

Pr(εm(n), Ij(m)|Ξn−1,H`) =

Pr(εm(n)|Ij(m), Ξn−1,H`) × Pr(Ij(m)|Ξn−1,H`)

giving us the general form for our problem1. Note that this
formulation provides us with a channel-by-channel (photon-
by-photon) processor, since themth terms are available at the
output of each channel

1Note that this decision function not only incorporates the energy amplitude
level (εm) and interarrival time-tags (4τm) for each constituent monoener-
getic source composing the target radionuclide, but also the probability of
occurrence or branching probability (αm) which acts as a weighting function
in the overall superposition enabling all of the energy lines to be combined.



Let us further assume that the instrumentation noise (ν(n))
is small relative to the inherent parametric uncertainties and
ignore it, then the log-likelihood ratio simplifies to

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

ln Pr(4τ t
m(n)|εt

m(n), It
j(m), Ξn−1,H1) +

lnPr(εt
m(n), It

j(m)|Ξn−1,H1) −
Mε∑

m=1

ln Pr(4τm(n)|εm(n), Ij(m), Ξn−1,H0) +

lnPr(εm(n), Ij(m)|Ξn−1,H0)
(17)

where we have applied the log transform and Bayes’ rule
above completing the decision function.

A. Sequential Radiation Detection

In this section we develop the statistical models (ignor-
ing the measurement noise) to implement the likelihood-
ratio detector. Since each individual RN is uniquely specified
(statistically) by its parameter set,{ε,4τ, α}, we assume
that α is known for each target (from tables). Using the
energy amplitude level distribution and its decomposition of
Eq. 14 thejth-monoenergetic source component selected by
the indicator function,Ij(m) is therefore

Pr(εj(n), Ij(m)|Ξn−1,H`) = αjPr(εj(n)|Ξn−1,H`) (18)

where we have applied Pr(Ij(m) = 1|Ξn−1) = αj.
Each energy amplitude component is assumed Gaussian

with corresponding distribution

Pr(εm(n) | Ij(m), Ξn−1,H`) ∼ N (εj(n), σ2
εj

)

=
1√

2πσεj

exp

{
− (εj(n) − εj(n))2

2σ2
εj

}
(19)

Finally, the interarrival times,4τ , are assumedconditionally
independentof bothε andIj(m) and exponentially distributed
such that

Pr(4τ (n) | Ij(m), Ξn−1,H`) =
Mε∏

m=1

Pr(4τm(n)|Ij(m), Ξn−1,H`)

=
Mε∏

m=1

λ4τm exp{−αmλ4τm4τm(n)}

(20)

with αm the probability of occurrence and for the rateλ4τm =
1/4τm, that is, the reciprocal of the mean interarrival time.
For thejth-monoenergetic source component, we have

Pr(4τ (n) | Ij(m), Ξn−1,H`) ∼ E(αjλ4τj4τj(n))
= λ4τj exp{−αjλ4τj4τj(n)} (21)

With these distribution models in hand, we can now construct
the sequential detection algorithm as

Pr(ξ(n; ε,4τ )|Ij(m), Ξn−1,H`)

=
Mε∏

m=1

λ4τm exp{−αmλ4τm4τm(n)}

× αm√
2πσεm

exp
{
− (εm(n) − εm(n))2

2σ2
εm

}

+
1√

2πσν

exp
{
−

ν2(n)
2σ2

ν

}
(22)

which leads to thesequential log-likelihood ratiodetection
processor of Eq. 17 (assuming the instrumentation noise is
small) and using the “true” parameters{εt

m,4τ t
m, αt

m} for
H1 as

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

ln
(αt

mλt
4τm√

2πσεt
m

)

−ln
(αmλ4τm√

2πσεm

)
+

(
αmλ4τm − αt

mλt
4τm

)
4τm(n)

+
1
2

(εm(n) − εm(n)
σεm

)2

− 1
2

(εm(n) − εt
m(n)

σεt
m

)2

(23)

This completes the structure of the sequential Bayesian radi-
ation detector, we will discuss the actual photon-by-photon
implementation of this processor in a subsequent section.
Again note the incorporation of all of the physics information
available (εm,4τm, αm) the decision function (see previous
footnote).

B. Sequential Bayesian Parameter Estimation

In order to implement this radionuclide detection scheme,
we must estimate the underlying parameter (amplitude and
interarrival time) distributions. Investigating the monoenergetic
EMS decomposition of a radionuclideRη with Mε monoen-
ergetic source components andNe(m) counts in the total
interval of count lengthN , we can define an overall parameter
vector by

Θ := [ε | τ | α] =
[ε1 · · · εMε | 4τ1 · · · 4τMε | α1 · · · αMε]

for Θ ∈ R2Mε×1 requiring 3Mε parameters to specify the
unknown radionuclide. The number of arrivals counted in the
interval N is Nε := [Nε(1) · · · Nε(Mε)] such thatN =∑Mε

m=1 Nε(m), as before.
We assume that the energy amplitudes can be characterized

by a random walk model

ε(n) = ε(n − 1) + wε(n − 1) (24)

for ε, w ∈ R2Mε×1 and ε ∼ N (ε, Rεε); wε ∼ N (0, Rwεwε).
The measurement instrument measures both photon energy
amplitude and interarrival time from theEMS; therefore, it
provides the vector measurement

ξ(n) := [ ξε(n) | ξ4τ (n) ]′ (25)



We model the energy amplitude component as the level
contaminated with zero-mean, Gaussian instrumentation noise
such that

ξε(n) = c′ε(n) + vε(n) = εm(n) + vε(n) (26)

since the scalar measurement is photon-by-photon withvε ∼
N (0, Rvεvε). The measurement system vectorc′ is a 1× Mε,
unit row vector, that is,c′ = e′m with a one in themthcolumn.
Thus, our final photon energy amplitude level model is given
by a Gauss-Markov representation

ε(n) = ε(n − 1) + wε(n − 1)
ξε(n) = c′ε(n) + vε(n) (27)

with noise sourceswε and vε characterized by zero-mean,
multivariate Gaussian distribution with covariance matrices,
Rwεwε and Rvεvε, respectively and the initial states the
true mean values characterizing the target RN,ε(0) ∼
N (εo, Rεoεo

).
Since we firstdiscriminatethe energy amplitude level to de-

termine which channel to process it, the actual implementation
requires only a scalar algorithm for themth-monoenergetic
line, that is, the monoenergetic line estimator is based on the
Markovian representation as

εm(n) = εm(n − 1) + wεm (n − 1)
ξε(n) = εm(n) + vε(n) (28)

with εm(0) ∼ N (εm, Rεmεm
) and wεm ∼

N (0, Rwεmwεm
);vε ∼ N (0, Rvεvε). Thus, photon-by-

photon processing leads to a scalar channel-by-channel
implementation.

Since these characterizations are linear Gauss-Markov mod-
els [3], we know that the optimal Bayesian processor is the
linear Kalman filter with posterior distribution given by

Pr(εm(n)|Ξn) ∼ N (ε̂m(n|n), σ̃2
εm

(n|n))

with conditional mean and variance specified by

ε̂m(n|n) = ε̂m(n|n − 1) + Kεm (n)em(n)
em(n) = εm(n) − ε̂m(n|n − 1)

Kεm (n) = σ̃2
εm

(n|n)/σ2
em

(n) (29)

where ε̂m(n|n) is the conditional mean estimate of themth-
energy amplitude level at arrival timen based on all of the
data up ton; σ̃2

εm
is the corresponding error covariance,

cov(εm(n)−ε̂m(n|n)); em(n) is the innovations sequence with
covariance,σ2

em
(n) = cov(em(n)) and Kεm is the weight or

gain matrix [3]. Next we consider the interarrival processor.
From the statistics of theEMS process, we know that the

interarrival times are exponentially distributed with parameter
λ4τ such that4τ (n) ∼ E(λ4τ4τ (n)) = λ4τ exp(−λ4τ ×
4τ (n)). Our process model for the interarrival time is just
an exponential random variable, while the underlying mea-
surement model is this variable contaminated with exponential
measurement (instrumentation) noise given by

4τm(n) = w4τm(n)
ξ4τ (n) = 4τm(n) + v4τm (n) (30)

for w4τm ∼ E(αmλ4τm4τm(n)) and v4τm ∼
E(λνv4τm(n)). The corresponding likelihood for this
problem is obtained using the measurement model and the
transformation of random variable rules [12] to give

Pr(ξ4τ (n)|4τ (n)) = λνe−λν (ξ4τ (n)−4τ(n)) (31)

We estimate the posterior distribution using a sequential Monte
Carlo approach and construct abootstrap particle filter [4]
using the following steps:

• Initialize: 4τm(0) ∼ E(4τm(0)), w4τm ∼
E(αmλ4τm4τm(n)), Wi(0) = 1/Np; i = 1, · · · , Np;

• State Transition: 4τmi (n) = w4τmi
(n) for wmi ∼

Pr(wmi (n));
• Log-Likelihood: ln C(ξ4τm (n)|4τmi(n)) = lnλν −

λν × (ξ4τ (n) −4τ (n));
• Weights: Wi(n) = Wi(n− 1)×C(ξ4τm (n)|4τmi(n));
• Normalize: Wi(n) = Wi(n)∑Np

i=1
Wi(n)

;

• Resample: 4τ̂mi (n) ⇒ 4τmi(n);
• Posterior: P̂r(4τm(n)|Ξn) =

∑Np

i=1 Wi(n)δ(ξ4τm (n)−
ξ4τmi

(n)); and
• MAP Estimate: 4τ̂ (n|n) = arg max P̂r(4τm(n)|Ξn).

So we see that the sequential likelihood radionuclide detector
evolves from estimating the posterior distributions that require
parameter estimates of energy “line” amplitude, rate (interar-
rival times) and occurrence probabilities for implementation.
We used a Rao-Blackwellization [16] approach by partitioning
the state vector into the amplitude and interarrival estimators
and applying a linear Kalman filter for the Gaussian distributed
amplitude and a particle filter for the exponentially distributed
interarrival times (rate)—channel-by-channel.

C. Sequential Bayesian Processor Implementation

In this section we discuss the implementation of the pro-
cessor for the radionuclide detection processor following the
design structure developed in Sec. 3. First, we investigate the
individual channel processor illustrated in Fig. 3 one for each
energy amplitude/rate composing the target radionuclide.

1) Energy Amplitude Level/Interarrival (Rate) Discrimina-
tor: We apply an energy amplitude discriminator to ”decide”
on which channel the photon should be processed and followed
by a rate discriminator using the interarrival “time tag”. The
discriminator used implied hypothesis testing by constructing
a confidence interval about the means of the respective pa-
rameters. Theenergy amplitude leveldiscriminator performs
the following confidence interval test to accept or reject the
photon:

[εtru − κασξ ≤ εm(n) ≤ εtru + κασξ] (32)

whereεtru is the true (channel) energy amplitude associated
with the targeted (for detection) radionuclide,ξε(n) is the raw
EMS photon arrival amplitude level measurement,κα is the
respective confidence coefficient with associated confidence
level α andσξ is the associated standard deviation associated
with the precision of the measurement instrument. When the
photon amplitude is accepted as belonging to themth-channel,



then ξεm → εm(n) and the interarrival measurement time-
tag is tested similarly for validity by the following confidence
interval discriminator2

[4τtru − κα̃σ4τ ≤ 4τ̂m(n) ≤ 4τtru + κα̃σ4τ ] (33)

where4τtru is the true (channel) interarrival amplitude asso-
ciated with the targeted (for detection) radionuclide,ξ4τ (n)
is the rawEMS photon interarrival measurement,κα̃ is the
respective confidence coefficient with associated confidence
level α̃ and σ4τ is the standard deviation with the variance
of the interarrival. Since the estimated interarrival time (4τ̂m)
is not the actual source interarrival, we use a simple transport
model with calibration data obtained prior to actual deploy-
ment processing.

After discrimination, we raw measurements are then pro-
cessed using the Bayesian techniques, the linear Kalman filter
(LKF) and the particle filter (PF) developed in the previous
section [4]. However, if the time-tag doesnot match the true,
then photon isrejected and no further processing occurs.
The branching or occurrence probability is estimated using
counting methods as discussed next.

2) Probability of Occurrence Estimation:We use a simple
counting technique to estimate the branching or occurrence
probability parameters. At each accepted arrival (after dis-
crimination). the counting estimator for themth-monoenergetic
component of the radionuclide is given by

α̂m(n) =
Nεm (n)
Mε(n)

(34)

whereNεm(n) is the total counts for themth source at arrival
time n or simply themth-channel countandMε(n) is thetotal
count of all of the RN channels or monoenergetic sources
at n. Note thatNεm (n) is updated by arrivals on channels
corresponding to the targeted RN so that at each new channel
arrival we have{εm(n),4τm(n)} → {εm(n + 1),4τm(n +
1)} such thatNεm (n + 1) → Nεm(n) + 1; Mε(n + 1) →
Mε(n) + 1 and α̂m(n + 1) → α̂m(n).

3) Energy Amplitude Level/Interarrival (Rate) Bayesian Pa-
rameter Estimation Results:As each photon is acquired, the
measurement and arrival times are extracted and discriminated.
If accepted then both the associated energy amplitude level
and interarrival time are sequentially updated using theLKF
processor for the amplitude andPF processor for the inter-
arrival time. A typical result of the processing for an entire
run is shown in Fig. 4 for a cesium radionuclide (137Cs).
In 4a we set the energy amplitude level estimate and its zero-
mean/whiteness test in Fig.4b. Recall that for aLKF processor
the resulting innovations sequence must be zero-mean and
white (uncorrelated). This is the case for the energy amplitude
estimates with (8.7 × 10−19 < 3.1 × 10−2)/0.1% out) as
illustrated in the figure. The interarrival estimates are also
reasonable and the zero-mean/whiteness check validates its
performance with (8.3 × 10−4 < 3.1 × 10−2)/4% out) quite
good. In summary both estimators perform reasonably and are

2For largen, the estimate is approximately Gaussian,4τ̂ ∼ N (λ,λ/
√

n).

Fig. 4. Bayesian model-based processing for137Cs radionuclide: (a) Photon
energy amplitude levels estimates (LKF). (b) Zero-mean/whiteness testing
(8.7× 10−19 < 3.1× 10−2)/0.1% out).

checked for validity by performing statistical whiteness tests
which are optimal in theLKF case and reasonable for thePF
case ([3],[4]).

The experimental set-up consists of sources, measurement
instruments (some for monitoring) including a high purity
germanium (HPG) commercial detector. The sources consisted
of a set of known calibration sources with multiple energy lines
and unknown background sources as shown in thePHSof Fig.
5a. The results of the processing using the parallel/distributed
processing scheme described in the previous sections are
shown in Fig. 5b where we see the rawPHSmeasured by the
commercial instrumentation as well as that by the sequential
Bayesian processor. Clearly, the sequential processor is capa-
ble of performing the estimation quite well as demonstrated
previously on the cesium source (see Fig. 4). ItsPHS is
uncluttered with undesirable energy counts and background
primarily due to the processing scheme demonstrating its
effectiveness over this controlled experimental data set.

4) Sequential Radionuclide Detection/Classification:The
sequential radionuclide detector is constructed as discussed
in Sec. 4.1 and Eq. 23. However, it is implemented in a
channel-by-channel framework as depicted in Fig. 3. Basi-
cally, the individual distributions are calculated inparallel
at each channel and then combined in the detector/classifier
as illustrated for the specific distributions where the required
parameters are replaced by their estimates. At each arrival
after discrimination, the accepted channel photon, sayjth
is processed by the energy amplitude level and interarrival
parameter estimators (θ̂) providing the input to the likelihood
ratio along with the truth parameters (θt) available from the
tables [2] to give[{εt

m}, {4τ t
m}, {αt

m}]; m = 1, · · · , Mε. Us-
ing the distribution relations developed for the joint parametric
distributions, and simplifying notation, we define the following



Fig. 5. Results of Bayesian parameter estimation for133Ba,137Cs, 60Co
radionuclides: (a)PHSestimation using high precisionHGe commercial de-
tector. (b) Parallel/distributed Bayesian processor usingLKF andPFparameter
estimators.

general functional form

Θm(n; θ) := Pr(4τm(n)|Im(k), Ξn−1,H`) ×
Pr(εm(n)|Im(k), Ξn−1,H`) × Pr(Im(k)|Ξn−1,H`)

(35)

and for our specific problem, we have under hypothesisH0

Θm(n; θ̂) =
α̂mλ̂4τm(n|n)√

2πσ̂εm(n|n)
exp

{
− α̂mλ̂4τm(n|n) ×

4τm(n) − (εm(n) − ε̂m(n|n))2

2σ̂2
εm

(n|n)

}
(36)

and under hypothesisH1

Θm(n; θt) =
αt

mλt
4τm√

2πσεt
m

×

exp

{
−αt

mλt
4τm

4τm(n)− (εm(n) − εt
m)2

2σ2
εt

m

}

(38)

Therefore, we can re-write Eq. 23 using this notation simply
as:

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

ln Θm(n; θt) −
Mε∑

m=1

lnΘm(n; θ̂)

(39)
Combining similar terms, we obtain the final sequential log-
likelihood ratio radionuclide detector specified by:

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

ln
(αt

mλt
4τm√

2πσεt
m

)

− ln
( α̂mλ̂4τm(n|n)√

2πσ̂εm(n|n)

)
+

(
α̂mλ̂4τm (n|n) − αt

mλt
4τm

)

×4τm(n) +
1
2

(εm(n) − ε̂m(n|n)
σ̂εm(n|n)

)2

−1
2

(εm(n) − εt
m(n)

σεt
m

)2

(40)

with implementation depicted in the figure where we ob-
serve that after successful discrimination the parameters are
estimated and employed to calculate the log-likelihood func-
tion as in Eq. 40. These are estimated channel-by-channel
(mth-channel) and the overall decision function implemented
sequentially (in arrival time). The diagram shows the input
photon measurement data (raw amplitude/interarrival)after
discrimination as input to the individual channel parameter
estimators. Once the parameters are estimated they are im-
plemented in each channel log-likelihood partial calculation
(Θm(n; θ)) and all of the partial sums are combined along with
the previous (in arrival time) log-likelihood to sequentially
update the new log-likelihood at timen. It is then compared to
the threshold to see if a detection is possible. If not, the next
photon is processed and the log-likelihood updated to see if
a decision can be made. This sequential radionuclide process
continues until there is enough data for a decision to made.

V. PROOF-OF-PRINCIPLE EXPERIMENT

The sequential Bayesian detector was applied to a set of
experimental composite radionuclideEMS data consisting of
three radionuclides cobalt (60Co), cesium (137Cs), barium
(133Ba) with 2, 1 and 5 energy lines (monoenergetic sources),
respectively along with background and an extraneous potas-
sium source. The sequence and corresponding pulse-height
spectrum is shown in Fig. 5. In (a) we observe the measured
photon energy amplitudes with thePHSshown in (b). The pri-
mary objective was to assess the performance of the processor
along with ability to detect and classify targeted radionuclides.
After an initial calibration phase of the algorithm which
consisted of “tuning” the Bayesian processors on simulated
and controlled data, setting initial parameters, etc., the overall
results of the processing are shown in Fig. 6. We note four
columns of data, the first column is the composite pulse-height
spectrum, with the second the compositeEMS with the circles
representing thediscriminatoroutput photons. Notice that they
are chosen by the discriminator confidence intervals forboth
energy amplitude and the corresponding time-tag and align
with the photo-peak bins of thePHS. The third column rep-
resents the enhanced energy amplitude levels of the processed
(channel) photon while the final column is the likelihood
decision functions for each of the targeted radionuclides. As
each photon is processed, the decision function is sequentially
updated until one of the thresholds (target/nontarget) is crossed
(lighter crosses in figure) declaring a threat or non-threat. Note
that the barium is detected (threshold exceeded) first (0.78
secs) followed by the cesium (1.0 sec) and then cobalt (4 sec).
It is interesting to note that the decision function is using all
of the available information extracted from theEMS.

It should also be noted that the thresholds are determined
from a receiver operating characteristic (ROC) curve for each
radionuclide decision function. That is, we synthesizeEMS
and noise sequences using a brute force approach to estimating
the ROC curves in order to calculate the required thresholds.



Fig. 6. Sequential Bayesian detection and classification. (a) Pulse-height
spectrum (after calibration). (b)EMS with discrimination (circles). (c) En-
hanced energy amplitude levels. (d) Log-likelihood decision functions for
cobalt 60, cesium 137 and barium 133 radionuclide detection/classification.

Based on the selected detection and false-alarm probabilities
respectively, (98%, 2%), the thresholds corresponding to this
operating point were calculated according to Eq. 10 for each
radionuclide.

VI. SUMMARY

We have shown that a sequential Bayesian detector can be
developed to solve the radiation detection problem by defining
a target radionuclide(s) and its monoenergetic decomposition
model evolving from the underlying transport physics of the
photon and measurement process. We developed a Bayesian
probabilistic framework to theoretically define and solve the
problem. Under certain assumed distributions, a particular real-
ization of the process was successfully developed and applied
to experimental data demonstrating its overall performance.
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